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Abstract

We study the problem of convergence to stability in coalition formation games in

which the strategies of each agent are coalitions in which she can participate and out-

comes are coalition structures. Given a natural blocking dynamic, an absorbing set

is a minimum set of coalition structures that once reached is never abandoned. The

coexistence of trivial (singleton) and non-trivial absorbing sets is what causes lack of

convergence to stability. To characterize games in which both types of set are present,

we first relate circularity among coalitions in preferences (rings) with circularity among

coalition structures (cycles) and show that there is a ring in preferences if and only if

there is a cycle in coalition structures. Then we identify a special configuration of over-

lapping rings in preferences characterizing games that lack convergence to stability.

Finally, we apply our findings to the study of games induced by sharing rules.
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1 Introduction

The allocation of resources is a core question in economics and the literature

on matching has recently emerged as one of the most successful and policy-

relevant applications of economic theory: Understanding and management of

school choice, kidney exchange and externalities have been enhanced by the

insights provided by a wide variety of matching models. From a theoretical

perspective, all these problems can be formalized as coalition formation games.

In such games, strategies for each agent consist of the set of coalitions in which

she may participate and the outcome is a coalition structure, i.e. a partition of

the set of agents into coalitions. Coalition formation games encompass a large

array of models studied in the literature. Depending on what coalitions are per-

missible, these games include one-sided problems such as the roommate prob-

lem and two-sided problems running from the classical one-to-one marriage

problem to many-to-one matching problems with peer effects and complemen-

tarities.1

In the study of coalition formation games, two different (but closely related)

questions arise: a static one that seeks to predict the equilibria of the game; and

a dynamic one that analyzes the convergence to those equilibria. In answering

the static question of what coalition structures will form, the most appealing

equilibrium notion for these games is that of (core) stability. A coalition struc-

ture is stable if there is no coalition whose members prefer it to the one that they

belong to in the coalition structure. A game with (at least) one stable coalition

structure is called a stable coalition formation game. Once stability is guaran-

teed, the dynamic perspective becomes salient. From a market design point

of view, this means studying a “natural” process of coalition formation which

seeks to mimic the way in which agents would form groups in an environ-

ment without a social planner. In cases where decentralized decision making in

itself may not suffice to reach a stable outcome, a centralized coordinating pro-

1 Roth and Sotomayor (1990) is a classic survey of theory, empirical evidence, and design

applications of many-to-one matching models.
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cess must be imposed in order to attain that outcome. Decentralized processes

can be formalized through (myopic) blocking dynamics among coalition struc-

tures.2 In our dynamics, a new coalition structure is formed when a coalition

blocks one or more coalitions of a previous coalition structure, and abandoned

agents remain single in the new one. A coalition formation game exhibits con-

vergence to stability if, starting from any coalition structure, the blocking dynam-

ics lead towards a stable coalition structure. Hence, identifying what games ex-

hibit convergence to stability crucially affects our insights on the implications

of different alternatives for market design.

This paper sets out to shed light on the problem of convergence to stability

in general coalition formation games. To that end, we study circularity among

coalitions in preferences, which we call rings, and characterize games which

lack convergence to stability in terms of unions of overlapping rings, which we

call ring components. Crucial to our findings is the concept of absorbing set. An

absorbing set is a minimal collection of coalition structures that, once entered

throughout a blocking dynamics, is never left. In this terminology, a stable

coalition structure can be identified with a trivial (singleton) absorbing set. Any

coalition formation game has at least one, (possibly non-trivial) absorbing set.

Marriage problems are particular coalition formation games in which per-

missible coalitions consist only of singletons and pairs, the set of agents consists

of two disjoint subsets, and every agent in each subset prefers staying alone to

being matched with another agent in the subset that she belongs to. These prob-

lems are always stable games (Gale and Shapley, 1962). Roth and Vande Vate

(1990) show that convergence to stability is satisfied for the natural blocking

dynamics mentioned above, which means that these games only present trivial

absorbing sets. Roommate problems can be seen as generalizations of marriage

problems with the same permissible coalitions but without the two-sided re-

striction on agents. Here, the blocking dynamics can have more complicated

patterns. Notably, a roommate problem can have either trivial absorbing sets or

2Another possibility is to consider farsightedness in the blocking dynamics, see for example

Diamantoudi and Xue (2003) and Ray and Vohra (2015a,b) among others.
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non-trivial absorbing sets. Tan (1991) establishes the necessary and sufficient

conditions for a problem to be of one type or the other (see also Inarra et al.,

2013). For those problems in which absorbing sets are trivial, our blocking dy-

namics ensure convergence to stability. For those problems in which absorbing

sets are non-trivial, the profile of agents’ preferences exhibits rings and there is

no stable coalition structure. However, for general coalition formation games, it

is the coexistence of both trivial and non-trivial absorbing sets that causes lack

of convergence to stability (Proposition 1). From this perspective, our contri-

bution consists of a characterization of those games in which both trivial and

non-trivial absorbing sets are present. To derive our characterization result,

we elaborate on the idea of circularity among coalitions. Our first observation

is that the blocking dynamics can generate cycles of coalition structures. We

show –Theorem 1– that each cycle of coalition structures induces a ring in pref-

erences and, conversely, every ring in preferences induces a cycle of coalition

structures. However, a ring in preferences is not a robust enough notion to cre-

ate a non-trivial absorbing set. The reasons for this are two-fold: the coalitions

that form the ring may collapse into a stable coalition structure and coalition

structures formed with ring coalitions (and single agents) can be blocked by

coalitions that include agents not in the ring.

Theorem 2 presents our main characterization. If the configuration of coali-

tions in the profile of preferences and in the blocking dynamics allows agents

in a ring component to circulate between its coalitions, and only between those

coalitions, then a non-trivial absorbing set is obtained. Conversely, in any non-

trivial absorbing set it is possible to identify coalitions that form a ring compo-

nent with such features. Therefore, the existence of a ring component of this

type, which we call effective, is equivalent to the lack of convergence to stability.

As an application of our results, we analyze some economic environments

in which coalitions produce an output to be divided among their members ac-

cording to a pre-specified sharing rule. In such environments, the sharing rule

naturally induces a game where each agent ranks the coalitions to which she be-
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longs according to the payoffs that she gets. Here, the question to be answered

is what rules generate stable coalition formation games in which decentralized

decision-making leads to a stable coalition structure. We focus on two types

of sharing rule: Bargaining rules and rationing rules. We show that games

induced by pairwise aligned bargaining rules (Pycia, 2012), which include the

Nash bargaining rule (Nash, 1950), exhibit convergence to stability (Theorem

3 ). A similar result is obtained in the context of rationing for parametric rules

(see Young, 1987; Stovall, 2014), which include several of the most thoroughly-

studied rules in the rationing literature (Theorem 4).

Finally, to analyze some real life situations such as academic labor market in

which complementarities are relevant, we introduce a sufficient condition for a

game to lack convergence to stability. That condition defines a class of games in

which agents’ preferences feature rings, and the (unique) stable coalition struc-

ture of the game is surrounded by one of those rings.

Related literature

In the literature on coalition formation games the papers by Banerjee et al.

(2001), Bogomolnaia and Jackson (2002) and Iehlé (2007) identify structures of

preferences that guarantee the existence of stable coalition structures.3 Echenique

and Yenmez (2007) develop an algorithm for matching markets with prefer-

ences over colleagues to determine the existence of stable matchings. Further-

more, Pycia (2012) and Gallo and Inarra (2018), in different contexts, study what

sharing rules induce stable coalition formation games.

The notion of absorbing sets has been studied in different contexts and un-

der different names: By Inarra et al. (2013) for the roommate problem, by Olaizola

and Valenciano (2014) and Jackson and Watts (2002) in a network context, (in

the latter under the name of “closed cycles”). As far as we know, Schwartz

(1970) was the first to introduce this notion for collective decision making prob-

3Coalition formation games were first studied by Drezé and Greenberg (1980) under the

name of hedonic games.
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lems and Shenoy (1979, 1980) proposed it under the name of “elementary dy-

namic solution” for n-person cooperative games. Furthermore, the union of

absorbing sets gives the “admissible set” (Kalai and Schmeidler, 1977), a solu-

tion defined for abstract systems and applied to various bargaining situations.

Recently, Demuynck et al. (2019) define a closely related notion, the “myopic

stable set”, in a very general class of social environments and study its relation

to other solution concepts.

Some papers have studied whether there are decentralized matching mar-

kets that converge to stability. The aforementioned procedure of Roth and

Vande Vate (1990) for the marriage problem was generalized by Chung (2000)

for the roommate problem with weak preferences. Later, Klaus and Klijn (2005)

extend it for many-to-one matching with couples and Kojima and Ünver (2008)

for many-to-many matching problems.

Eriksson and Häggström (2008) show that a stable matching can be attained

by means of a decentralized market, even in cases of incomplete information

in two-sided matching.4 Following a different approach, Diamantoudi et al.

(2004) analyze convergence to stability in the stable roommate problem with

strict preferences. In that paper, a stable matching is fixed and starting from

any matching a path to stability is constructed by trying to get the pairs in the

fixed matching until a stable matching (possibly another) is reached. All the

above works study the same natural blocking dynamics that we study in this

paper, in which abandoned agents are left single when a new coalition is ob-

tained through blocking. A different approach is taken by Tamura (1993) in

the marriage problem. Following Knuth (1976), he considers problems with

equal numbers of men and women, all of them mutually acceptable, in which

all agents are always matched. Unlike the standard blocking dynamics, the less

realistic dynamics that he uses assume that when a couple satisfies a blocking

pair the abandoned partners also match to each other. Knuth sets the ques-

4In a context of overlapping group structures, paths to stability are analyzed by Mauleon

et al. (2019).
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tion of whether there is convergence to stability in this model5 and Tamura

gives a counter-example in which some matchings cannot converge to any sta-

ble matching. The example shows the coexistence of five absorbing sets of car-

dinality one and one of cardinality sixteen.

However, to the best of our knowledge, there are no published works deal-

ing with convergence to stability in the entire class of coalition formation games.6

Furthermore, our analysis of convergence to stability differs from that of the pa-

pers mentioned. We do not outline a specific procedure to reach stability or fix a

stable matching to come after. Instead, we study the stable coalition formation

games that have non-trivial absorbing sets and therefore lack convergence to

stability.

The rest of the paper is organized as follows. Section 2 presents the model,

the notion of absorbing set, and links the lack of convergence to stability with

the co-existence of trivial and non-trivial absorbing sets. Section 3 studies the

relation between rings in the profile of preferences and cycles of the coalition

structures. Section 4 sets out the definition of ring component. This enables

us to establish our characterization result. Section 5 applies some previous

results to study coalition formation games induced by sharing rules. Section

6 introduces the class of enclosed coalition formation games in which non-

convergence to stability is guaranteed. Some concluding remarks are given in

Section 7.

2 Coalition formation systems and absorbing sets

In this section, we first introduce the preliminaries of the paper and then present

the notions of coalition formation system and absorbing set.

Let N = {1, . . . , n} be a finite set of agents. A non-empty subset C of N is

called a coalition. Let K denote the set of permissible coalitions. Assume that

5This is open problem number 8 in Knuth (1976).
6There is an unpublished manuscript by Pápai (2003) that addresses this problem.
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{i} ∈ K for each i ∈ N.7 It is natural to focus only on permissible coalitions,

since in most contexts agents cannot be coerced to form all coalitions. Each

agent i ∈ N has a strict, transitive preference relation over the set of permissible

coalitions of K to which she belongs, denoted by �i, such that i ∈ C ∩ C′ and

C �i C′ mean that agent i prefers coalition C to C′. From now on, when we

write C �i C′ it is understood that i belongs to C′ ∩ C. Throughout the paper,

we assume that for each non-single coalition C ∈ K and, for each i ∈ C, C �i

{i}. A preference profile of all agents over permissible coalitions, �N= (�i

)i∈N, defines a coalition formation game which is denoted by (N,K,�N). Let

Π denote the set of partitions of N into permissible coalitions, which we call

coalition structures. A generic element of Π is denoted by π. For each π ∈ Π,

π(i) denotes the coalition in π that contains agent i. Given C ∈ K and π ∈ Π,

C is said to block π if C �i π(i) for all i ∈ C.

The main solution concept for a coalition formation game is that of core sta-

bility, namely a coalition structure that is immune to deviation of coalitions. In

such games, a coalition structure π ∈ Π is stable if no coalition blocks it. Here-

after, a stable coalition structure is denoted by πN. Since we are interested in

convergence to stability, throughout this paper we focus only on stable coalition

formation games, i.e. games with a non-empty core.

2.1 Coalition formation systems

As just mentioned, a stable coalition structure is immune to any coalitional

blocking. But if a coalition structure is not stable then its blocking by a coalition

does not specify its transformation into a new coalition structure. However,

the analysis of convergence to stability requires the definition of some blocking

dynamics between coalition structures. To that end, we associate a coalition for-

mation system with a coalition formation game. The associated system is a pair

7Restricting to permissible coalitions is commonplace in game theory literature (for instance,

see Kalai et al., 1979; Myerson, 1977), and in particular in coalition formation games (see Pápai,

2003; Inal, 2015).
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formed by the set of coalition structures that can be formed with the permissi-

ble coalitions defined in the game and a binary relation which drives transition

from one coalition structure to another. By doing this, we specify the concept

of (lack of) convergence to stability.

The binary relation chosen is consistent with the standard blocking defini-

tion in that all members of the blocking coalition strictly improve. However,

once a coalition structure has been blocked there is no single way to define

how the new coalition structure emerges. If one or more agents leave a coali-

tion, what happens with the remaining agents? Do they become singletons

or do they remain together? Hart and Kurz (1983) argue that if a coalition is

an agreement of all its members and then some agents leave, the agreement

breaks down and the remaining agents become singletons. In our analysis this

assumption fits well, because our modeling only considers coalitions which are

permissible, and the coalition of abandoned agents might not be permissible

once a new coalition is formed.

Definition 1 Let (N,K,�N) be a coalition formation game. The blocking relation

� over Π is defined as follows: π′ � π if and only if there is C ∈ K such that

(i) C ∈ π′ and C blocks π,

(ii) for each C′ ∈ π such that C′ ∩ C 6= ∅, π′(j) = {j} for each j ∈ C′ \ C,

(iii) for each C′ ∈ π such that C′ ∩ C = ∅, C′ ∈ π′.

The pair (Π,�) is called the coalition formation system associated with the coali-

tion formation game (N,K,�N). When we want to stress the role of coalition C, we

say that π′� π via C.

Condition (i) says that each agent i of the permissible coalition C improves

in π′ with respect to her position in π. Condition (ii) says that permissible coali-

tions from which one or more agents depart break into singletons in π′. Con-

dition (iii) says that the permissible coalitions that do not suffer any departure

in π, remain unchanged in π′. Notice that the blocking relation� implies that
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agents behave myopically, in the sense that they take the decision about block-

ing a coalition structure by considering just the resulting coalition, i.e. they are

unable to foresee their positions even one step ahead.8

Remark 1 The blocking relation � is irreflexive, antisymmetric and not necessarily

transitive.

Given�, let�T be the transitive closure of�. That is, π′ �T π if and only

if there is a finite sequence of coalition structures π = π0, π1, . . . , π J = π′ such

that, for all j ∈ {1, ..., J}, π j � π j−1. Hereafter, we say that coalition formation

game (N,K,�N) exhibits convergence to stability if for each π ∈ Π, there is a

stable coalition structure πN ∈ Π such that πN �T π. Otherwise, we say that

the game lacks convergence to stability.

2.2 Absorbing sets

Our tool for studying lack of convergence to stability is the notion of absorbing

set, which is a minimal set of coalition structures that once entered through the

blocking relation is never left. An appealing property of absorbing sets is that

each coalition formation system has at least one, although in general it may not

be unique.

Definition 2 Let (N,K,�N) be a coalition formation game. A non-empty set of coali-

tion structures AN ⊆ Π is an absorbing set whenever for each π ∈ AN and each

π′ ∈ Π \ {π},

π′ �T π if and only if π′ ∈ AN.

If |AN| ≥ 3, AN is said to be a non-trivial absorbing set. Otherwise, the absorbing

set is trivial.

Notice that coalition structures in AN are symmetrically connected by the re-

lation �T, and that no coalition structure in AN is dominated by a coalition

structure that is not in the set. Next, we introduce a remark containing four

facts about absorbing sets.
8From now on, it is understood that all coalitions considered here are permissible ones.
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Remark 2 Facts on absorbing sets.

(i) An absorbing set AN contains no stable coalition structure if and only if |AN| ≥

3.

(ii) πN is a stable coalition structure if and only if {πN} is an absorbing set.

(iii) For each non-stable coalition structure π ∈ Π, there are an absorbing setAN and

a coalition structure π′ ∈ AN such that π′ �T π.

(iv) For each absorbing set AN, either |AN| = 1 or |AN| ≥ 3.

Remark 2 (i) is implied by the antisymmetry of �. Remark 2 (ii) recalls that

each stable coalition structure is in itself an absorbing set. Remark 2 (iii) says

that from any non-stable coalition structure there is a finite sequence of such

structures that reaches a coalition structure of an absorbing set (this property is

called outer stability in Kalai and Schmeidler (1977)). Remark 2 (iv) is straight-

forwardly implied by (i) and (ii). This section concludes with a proposition that

relates stability and absorbing sets.

Proposition 1 A stable coalition formation game lacks convergence to stability if and

only if its associated coalition formation system has a non-trivial absorbing set.

Proof. Let (N,K,�N) be a coalition formation game and let (Π,�) be its asso-

ciated coalition formation system.

(=⇒) Assume that (Π,�) does not have non-trivial absorbing sets. Then, by

Remark 2 (ii), the only element of each absorbing set is a stable coalition struc-

ture. By Remark 2 (iii), for each non-stable coalition structure π ∈ Π there is a

stable coalition structure πN such that πN �T π. Therefore, coalition formation

game (N,K,�N) exhibits convergence to stability.

(⇐=) Assume that (Π,�) has a non-trivial absorbing set AN and let π ∈ AN.

Then, by Remark 2 (i), AN has no stable coalition structure. Therefore, by the

definition of absorbing set, there is no stable coalition structure πN such that

11



πN �T π. This means that coalition formation game (N,K,�N) lacks conver-

gence to stability. �

3 Rings and cycles

This section relates the notions of rings and cycles. In this paper, “cycle” refers

to the circularity of coalition structures in a coalition formation system. First,

some notation and the definition of ring must be introduced. For each pair

C, C′ ⊆ N such that C∩C′ 6= ∅, C � C′ is written if and only if C �i C′ for each

i ∈ C ∩ C′.

Definition 3 An ordered set of non-single coalitions (R1, . . . , RJ) ⊆ K, with J ≥ 3,

is a ring if Rj+1 � Rj for j = 1, . . . , J subscript modulo J.

For the sake of convenience, we sometimes identify a ring with the non-ordered

set of its coalitions, R = {R1, . . . , RJ}, and refer to coalitions in R as ring coali-

tions. Notice that the definition of a ring requires that all agents in the inter-

section of two consecutive ring coalitions should improve. There are several

ways to define rings in preferences. Pycia (2012) and Inal (2015) define cyclic-

ity among coalitions by requiring that only one agent at the intersection of two

consecutive coalitions strictly prefer the first of them to the second. In both

these definitions, unlike ours, other members of two consecutive coalitions can

oppose the transition from one coalition to the next.

Definition 4 An ordered set of coalition structures (π1, . . . , πJ) ⊂ Π, with J ≥ 3, is

a cycle if πj+1 � πj for j = 1, . . . , J subscript modulo J.

Next, we present an algorithm that constructs a ring from a cycle of coali-

tion structures. LetC = (π1, . . . , πJ) be a cycle of coalition structures, let Cj

denote the coalition that is formed in πj, i.e., πj � πj−1 via Cj, and consider the

ordered set C = (C1, . . . , CJ). To construct a ring, proceed as follows:
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Algorithm:

Step 1 Set R1 as any coalition in C.

Step t Set

Rt ≡ minr≥1{Cj+r such that Cj = Rt−1 and Cj ∩ Cj+r 6= ∅ with j + r mod J}.

IF Rt = Rs for s < t,

THEN set (Rs+1, . . . , Rt), and STOP.

ELSE continue to Step t + 1.

Notice that in each step of the algorithm a different coalition of C is selected

except in the last step, where only one of the previously selected coalitions is

singled out. Therefore, the algorithm stops in at most J + 1 steps (recall that J =

|C|). The following lemma shows that the ordered set (Rs+1, . . . , Rt), where s is

identified in the algorithm, is actually a ring. To simplify notation, we rename

the elements of the ordered set and write (R1, . . . , R`) = (Rs+1, . . . , Rt). The

algorithm is illustrated with the following example:

Example 1 Consider the coalition formation game (N,K,�N) given by the table bel-

low, where the preferences of the agents are listed in columns in decreasing order. This

game has a ring, (2356, 13, 12), which is represented in the figure.9

1 2 3 4 5 6

12 2356 13 45 2356 2356

123 123 123 4 45 6

13 12 2356 5

1 2 3

2356

13

12

The associated coalition formation system is represented bellow by a digraph. There

is a non-trivial absorbing set AN = {π2, π3, π4, π5, π6}. The blocking relation �
9To simplify notation, we omit curly brackets and commas to represent a coalition. For

example, coalition {1, 2, 3} is simply written as 123.
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between coalition structures is represented by arrows. The black ones represent the

blocking relation between coalition structures belonging to AN.

π5

π4

π0

π6

π1

π2

π3

πN

π0 = {1, 2, 3, 4, 5, 6}

π1 = {123, 4, 5, 6}

π2 = {13, 2, 4, 5, 6}

π3 = {12, 3, 4, 5, 6}

π4 = {13, 2, 45, 6}

π5 = {12, 3, 45, 6}

π6 = {1, 2356, 4}

πN = {123, 45, 6}

Consider cycleC = (π2, π4, π5, π6). The set of blocking coalitions between coalition

structures is C = (13, 45, 12, 2356). Assume that Step 1 of the previous algorithm se-

lects coalition 45. The next steps select coalitions 2356, 13, and 12, respectively. The

algorithm ends when coalition 2356 is reached again, and ring (2356, 13, 12) is ob-

tained. ♦

Lemma 1 LetC be a cycle of coalition structures. Then, cycleC induces a ring.

Proof. LetC be a cycle of coalition structures. Applying the previous al-

gorithm results in the ordered set (R1, . . . , R`). We claim that the ordered set

(R1, . . . , R`) thus constructed is a ring, i.e. for each Rj+1 and Rj in the ordered

set, Rj+1 � Rj and ` ≥ 3. Take any coalition Rj. Coalition Rj+1 (modulo `) is the

closest coalition that has non-empty intersection with Rj (following the modu-

lar order of the coalition structures in cycleC ), so all the coalition structures

between the one in which Rj blocks and the one in which Rj+1 blocks contain

coalition Rj. Let π and π′ be the two consecutive coalition structures inC such

that π′ � π via Rj+1. Rj+1 is the blocking coalition, so Rj+1 belongs to π′. Fur-

thermore, since Rj belongs to π and Rj+1 ∩ Rj 6= ∅, by Definition 1 Rj+1 � Rj.

Furthermore, ` ≥ 3. This holds for the following two facts: (i) there are at least

two coalitions in the ordered set, because all the coalitions that block in a cycle
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are also blocked; (ii) if there are only two coalitions, say R1 and R2, then there

is an agent i ∈ R1 ∩ R2 such that R1 �i R2 �i R1, which by transitivity implies

R1 �i R1, a contradiction. �

The following theorem, which plays a central role in our characterization

result, establishes the relationship between a ring of coalitions in the preference

profile and a cycle of coalition structures of the associated coalition formation

system.

Theorem 1 A coalition formation game has a ring of coalitions if and only if its asso-

ciated coalition formation system has a cycle of coalition structures.

Proof. (⇐=) This is proven by Lemma 1.

(=⇒) Let (R1, . . . , RJ) be a ring in the coalition formation game (N,K,�N).

This ring induces a cycle of coalition structuresC = (π1, . . . , πJ) where πj is

defined as follows:

πj(i) =

 Rj for i ∈ Rj

{i} otherwise.

Note that πj is obtained from πj−1 by satisfying blocking coalition Rj for each

j = 1, . . . , J. �

4 Effective ring component and characterization

In this section we characterize a non-trivial absorbing set in terms of effective

ring components. Subsection 4.1 defines the notion of effective ring component

and illustrates it with two numerical examples. Subsection 4.2 contains the

characterization result illustrated with two numerical examples.

4.1 Effective ring component

A coalition formation game may have multiple rings, some of which may over-

lap. A collection of overlapping rings is a set of rings such that for each R in the

collection there is anotherR′ in the collection such thatR∩R′ 6= ∅. However,
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not all rings of a coalition formation game induce a non-trivial absorbing set

and attention must be paid to those that do.

Definition 5 Let (N,K,�N) be a coalition formation game. A union of overlapping

rings is a ring componentRC if there is a non-trivial absorbing set AN such that for

each ring coalition R ∈ RC, there are π, π′ ∈ AN with π′ � π via R. In this case,

RC is said to be embedded in AN .

Notice that for each pair of different coalitions C, C′ ∈ RC there is a finite

sequence of coalitions C = C0, C1 . . . , CJ−1, CJ = C′ that belong toRC such that

CJ � CJ−1 � . . . � C1 � C0. Example 2 illustrates a coalition formation game

with several rings some of which are not embedded in its non-trivial absorb-

ing set. Example 3 illustrates a coalition formation game with two overlapping

rings embedded in its non-trivial absorbing set, that justifies the previous defi-

nition.

Example 2 Consider the coalition formation game (N,K,�N) given by the following

table:

1 2 3 4 5 6 7

15 26 13 456 457 N N

14 23 N N N 26 457

12 N 23 14 15 456 7

N 12 3 457 456 6

13 2 4 5

1

The associated coalition formation system can be represented by the following digraph:
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π0

π1

π2

π3

π4

π5

π6π7

π8

π9

π10

π11

π12

π13π14

π15

π16

π17

π18

π19

π20

π21

πN

where the coalition structures are

π0 = {1, 2, 3, 4, 5, 6, 7} π8 = {1, 2, 3, 456, 7} π16 = {1, 23, 456, 7}

π1 = {13, 2, 4, 5, 6, 7} π9 = {13, 2, 456, 7} π17 = {14, 23, 5, 6, 7}

π2 = {12, 3, 4, 5, 6, 7} π10 = {13, 2, 457, 6} π18 = {14, 26, 3, 5, 7}

π3 = {14, 2, 3, 5, 6, 7} π11 = {13, 26, 4, 5, 7} π19 = {15, 26, 3, 4, 7}

π4 = {15, 2, 3, 4, 6, 7} π12 = {15, 23, 4, 6, 7} π20 = {1, 26, 457, 3}

π5 = {1, 23, 4, 5, 6, 7} π13 = {12, 3, 456, 7} π21 = {13, 26, 457}

π6 = {1, 26, 3, 4, 5, 7} π14 = {12, 3, 457, 6} πN = {N}

π7 = {1, 2, 3, 457, 6} π15 = {1, 23, 457, 6}

This game has {N} as the stable coalition structure and AN = {π18, π19, π20, π21}

as the non-trivial absorbing set.
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12

23

13

R1

457

14

15

R2

457

456

15

R3

The game has three rings: R1 = {12, 23, 13},R2 = {457, 14, 15}, andR3 = {457, 456, 15}.

Observe thatR1 is not embedded inAN, and even thoughR2 andR3 overlap onlyR2

is a ring component embedded in AN. ♦

Example 3 Consider the coalition formation game (N,K,�N) given by the following

table:

1 2 3 4 5 6

12 234 13 234 56 56

123 23 123 45 45 6

13 123 23 4 5

1 12 234

2 3

The coalition structures and the digraph of the associated coalition formation system

are the following:

π0

π1

π2

π3

π4π5

π6π7

π8 π9π10

π11

π12 π13

π14

π15

πN

π0 = {1, 2, 3, 4, 5, 6} π1 = {13, 2, 4, 5, 6}

π2 = {12, 3, 4, 5, 6} π3 = {23, 1, 4, 5, 6}

π4 = {234, 1, 5, 6} π5 = {45, 1, 2, 3, 6}

π6 = {56, 1, 2, 3, 4} π7 = {123, 4, 5, 6}

π8 = {13, 2, 45, 6} π9 = {12, 3, 45, 6}

π10 = {23, 1, 45, 6} π11 = {123, 45, 6}

π12 = {13, 2, 4, 56} π13 = {12, 3, 4, 56}

π14 = {23, 1, 4, 56} π15 = {234, 1, 56}

πN = {123, 4, 56}
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This game has πN = {123, 4, 56} as its stable coali-

tion structure and AN = {π12, π13, π14, π15} as

the non-trivial absorbing set. The game has two

rings: R1 = {12, 23, 13} and R2 = {13, 12, 234}.

R1 and R2 are overlapping rings, and their union

is the only ring component embedded in AN.
12

23

13

234

♦

Not every ring component embedded in a non-trivial absorbing set is re-

sponsible of the lack of convergence to stability. A ring component without

“external” blocking is found to do the job. Before we introduce this require-

ment some notation needs to be added. Given an absorbing set AN, let C(AN)

be the set of non-single coalitions participating inAN. Formally, C(AN) = {C ∈

K : |C| > 1 and there is π ∈ AN such that C ∈ π}.

Definition 6 Let (N,K,�N) be a coalition formation game,AN a non-trivial absorb-

ing set, and RC a ring component embedded in AN. Coalition X ∈ C(AN) \ RC is

an exit ofRC inAN if there are π, π′ ∈ AN and R ∈ RC such that:

(i) R ∈ π,

(ii) X � R, and

(iii) π′ � π via X.

This definition will be illustrated in Example 4. Notice that an exit of a ring

component could be a coalition of another ring component. Now, we are in the

position to introduce the notion used to characterize a non-trivial absorbing set.

Definition 7 Let (N,K,�N) be a coalition formation game. A ring component RC

is effective if there is a non-trivial absorbing set AN such that RC is embedded and

has no exit in AN.
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4.2 The characterization result

To present the characterization result, we first show that it is possible to recover

the collection of ring components embedded in a non-trivial absorbing set.

Proposition 2 A non-trivial absorbing set of a coalition formation system induces a

collection of ring components.

Proof. LetAN be a non-trivial absorbing set. Notice that, given any two different

coalition structures inAN, by Definition 2 there is a cycle of coalition structures

in AN that includes those structures. AN can therefore be seen as the union of

all such cycles. Thus, for each cycle of coalition structures in AN, the algorithm

developed in Section 3 constructs a ring. By merging overlapping rings, all ring

components embedded in AN can be constructed. �

The existence of a collection of ring components in a non-trivial absorbing

set suggests that the relation between them should be analyzed. That relation is

defined by using the notion of a path of coalitions within a non-trivial absorbing

set.

Definition 8 LetAN be a non-trivial absorbing set and let C, C′ be two different coali-

tions in C(AN). There is a path from C to C′ inAN if, for each j = 0, . . . , t, there

are πj ∈ AN and Xj ∈ πj such that, for each j = 0, . . . , t− 1,

(i) πj+1 � πj,

(ii) X0 = C, Xt = C′, and Xj+1 = Xj or Xj+1 � Xj.

Observe that Condition (i) requires the blocking relation between any two con-

secutive coalition structures of the path; and Condition (ii) requires that every

pair of consecutive blocking coalitions in the path intersect each other. Notice

that whenever Xj+1 6= Xj, πj+1 � πj via Xj+1.

Definition 9 Let AN be a non-trivial absorbing set and let RC and RC ′ be two dif-

ferent ring components embedded in AN. Define RC /RC′ if and only if there are

coalitions C ∈ RC and C′ ∈ RC ′ such that there is a path from C to C′ in AN.
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The example below illustrates these two definitions.

Example 4 Consider the coalition formation game (N,K,�N) given by the following

table:

1 2 3 4 5 6 7 8 9 a b c

N N N 47 56 46 N N N ab bc ac

14 23 13 14 N N 7a 89 79 N N N

12 13 23 45 45 56 47 78 89 ac ab bc

13 2 3 N 5 6 78 8 9 7a b c

1 46 79 a

4 7

In this game, the stable coalition structure is πN = {N}. The non-trivial absorbing

set AN is formed by multiple overlapping cycles of coalition structures. Each coalition

structure in AN contains coalition ab, bc or ac, while the remaining agents are either

grouped in two-agent coalitions or are singletons. If the algorithm in Section 3 is ap-

plied to each of the cycles in AN, it is possible to construct the four rings components

embedded in AN: RC1 = {12, 23, 13}, RC2 = {45, 46, 56}, RC3 = {78, 89, 79},

andRC4 = {ab, bc, ac}.

12

23

13

RC1

45

46

56

RC2

78

89

79

RC3

ab

bc

ac

RC4

Notice that coalitions 14, 47, 7a ∈ C(AN) are disregarded by the algorithm, i.e. al-

though these coalitions block some coalition structures of AN they do not belong to

any ring component. Observe that coalition 14 is an exit of RC1, coalitions 14 and 47

are exits of RC2, and coalitions 47 and 7a are exits of RC3. Consider the following

sequence of coalition structures πj in AN and its blocking coalitions Xj:
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π0 = {12, 3, 4, 56, 78, 9, ab, c}

π1 = {14, 2, 3, 56, 78, 9, ab, c}

π2 = {14, 2, 3, 56, 7, 89, ab, c}

π3 = {1, 2, 3, 47, 56, 89, ab, c}

π4 = {1, 2, 3, 47, 56, 89, a, bc}

π5 = {1, 2, 3, 4, 56, 7a, 89, bc}

π6 = {1, 2, 3, 4, 56, 7, 89, ac, b}

X0 = 12

X1 = 14

X2 = 14

X3 = 47

X4 = 47

X5 = 7a

X6 = ac

This sequence fulfills the conditions of Definition 8, so there is a path from coalition 12

ofRC1 to coalition ac ofRC4, which means thatRC1 C RC4. ♦

LetCT be the transitive closure ofC . Next, we show some properties of this

relation.

Lemma 2 Relation CT is a strict partial order.

Proof. To prove thatCT is a strict partial order, it must be shonw that it is a tran-

sitive, irreflexive relation. By definition, transitivity holds. To show irreflexivity

ofCT it suffices to prove the acyclicity ofC, since this implies asymmetry ofCT

and, in turn, irreflexivity of CT. Assume then that C is not acyclic. This im-

plies that there are ring componentsRC1, . . . ,RCr with r ≥ 3 embedded in AN

such that RC j C RC j−1 for j ∈ {2, . . . , r} and RC1 C RCr. This in turn implies

that there is a cycle of coalition structures in AN that generates a ring contain-

ing coalitions of these ring components. This contradicts the definition of ring

component. Thus, C is acyclic and therefore CT is a strict partial order. �

Relation CT enables us to link the ring components, establishing a sort of

hierarchy among them, until a maximal one is found. This maximal ring com-

ponent happens to be effective. To prove this, in the following lemma we show

that there is at least one ring component which is maximal for CT.10

10Recall that an element is maximal for a strict partial order if it is not smaller than any other

element in the set.
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Lemma 3 Let (N,K,�N) be a coalition formation game. If there is a non-trivial

absorbing set AN, then there is a ring component embedded in AN which is maximal

for CT .

Proof. Without loss of generality, let RC1, . . . ,RCs be the finite list of ring com-

ponents embedded in AN. DefineRC?1 = RC1 and, for j ∈ {2, . . . , s}, set

RC?j =

 RC j ifRC j−1 CT RC j

RC?j−1 otherwise

Thus, by construction, and sinceCT is a strict partial order by Lemma 2,RC?s is

maximal for CT . �

The following lemma shows that if a ring component embedded in a non-

trivial absorbing set has an exit in that absorbing set, it is not maximal for CT .

Lemma 4 Let AN be a non-trivial absorbing set and let RC be a ring component

embedded in AN. If there is an exit of RC in AN, then there is a ring component RC ′

embedded in AN such thatRC C RC ′.

Proof. Let AN be a non-trivial absorbing set and let RC be a ring component

embedded inAN. Assume X is an exit ofRC inAN. Therefore, there are π̃, π? ∈

AN and R ∈ RC such that R ∈ π̃, X � R, and π? � π̃ via X. If X belongs to a

ring component RC ′ embedded in AN, then RC C RC ′. Assume, next, that X

is not part of any ring component embedded in AN. Define the set

B = {Y ∈ C(AN) : there is a path from X to Y in AN}

and letR denote the collection of all coalitions in ring components embedded

in AN. We claim that B ∩R 6= ∅. To see this, take any C1 ∈ B . This

implies that there is π1 ∈ AN such that C1 ∈ π1 and π1 �T π?. Starting from

partition π1, “move” within the absorbing set until a partition π2 is reached

in which C1 is no longer present. Let C2 be such that C2 ∈ π2 and C2 � C1.

Notice that C2 ∈ B as well. Proceeding in the same way, it is possible to
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construct a sequence in B such that Ct+1 � Ct for each t. Since B is finite,

there is t? such that Ct? = Ct′ for t′ < t?. Without loss of generality, we can

choose t? to be the smallest that fulfills this property. This implies that coalitions

Ct′+1, Ct′+2, . . . , Ct? form a ring, and therefore are inR . Hence,B ∩R 6= ∅.

Thus, there are R′ ∈B ∩R and a ring component RC ′ such that R′ ∈ RC ′.

Therefore, there is a path from X to R′ and, consequently,RC C RC ′. �

Lemmata 3 and 4 together with Proposition 2 make it possible to character-

ize stable coalition formation games in terms of effective ring components.

Theorem 2 A stable coalition formation game lacks convergence to stability if and

only if it has an effective ring component.

Proof. By Proposition 1, it suffices to prove that there is a non-trivial absorbing

set if and only if there is an effective ring component.

(=⇒) Let AN be a non-trivial absorbing set. By Proposition 2, all ring compo-

nents embedded in AN can be constructed. By Lemma 3, one of them is maxi-

mal for CT, say, RC?. Assume that RC? has an exit in AN. Then, by Lemma 4,

there is a ring componentRC ′ such thatRC? C RC ′. This contradicts the max-

imality of RC? for CT . Therefore, RC? has no exit in AN, and it is an effective

ring component for AN.

(⇐=) Let RC be an effective ring component. Then, by the definition of ring

component, there is a non-trivial absorbing set AN. �

The following corollary follows immediately from the characterization re-

sult.

Corollary 1 A stable coalition formation game without rings in preferences exhibits

convergence to stability.

Observe that the preferences over coalitions of the agents of the effective

ring components, unlike those of the remaining agents, are responsible for the

existence of a non-trivial absorbing set and, as a result, for the lack of conver-

gence to stability. Example 4 illustrates how the non-effective ring components

are related to the effective one.
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Example 4 (continued) Recall that this game has four disjoint rings embedded inAN

and therefore ring components: RC1 = {12, 23, 13}, RC2 = {45, 46, 56}, RC3 =

{78, 89, 79}, and RC4 = {ab, bc, ac}. Furthermore, coalition 14 is an exit of RC1,

coalitions 14 and 47 are exits ofRC2, and coalitions 47 and 7a are exits ofRC3. Hence,

none of these ring components are effective, while ring component RC4 has no exit

and is therefore effective. The coalitions disregarded by the algorithm 14, 47 and 7a

connect the ring components within AN so that RC1 CT RC4, RC2 CT RC4 and

RC3 CT RC4. These relations are illustrated by the following figure:

RC1 RC2 RC3

RC4

14 47 7a

Notice that the set of agents {a, b, c} is responsible for the existence of the non-trivial

absorbing set AN so that if ring coalitions ab, bc and ac become non-permissible, it is

easy to see that there is convergence to πN. ♦

Lastly, recall that only stable coalition formation games are considered here.

However, since the analysis cover the agents’ preferences that induce a non-

trivial absorbing set, the number of stable coalition structures that a game may

have is irrelevant in obtaining the characterization result. To conclude this sec-

tion, we present an example that shows that a coalition formation games may

have multiple non-trivial absorbing sets.

Example 5 Consider the coalition formation game (N,K,�N) given by the following

table:
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1 2 3 4 5 6 7

167 23 13 456 456 67 457

12 123 123 4567 4567 4567 4567

123 12 23 457 457 456 67

13 2 3 4 5 167 167

1 6 7

The associated coalition formation system can be represented by the following digraph:

π1

π2

π3

π4

π5

π6

π7

π8π9

π10

π11

π12

π13

π14

π15

π16

π17

π18

π19

π20

π21

π22

π23

π24

π25

π26

πN

AN
1

AN
2

AN
3

where the coalition structures are
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π1 = {13, 2, 457, 6} π8 = {12, 3, 4, 5, 67} π15 = {123, 4, 5, 67} π21 = {1, 23, 4, 5, 6, 7}

π2 = {12, 3, 457, 6} π9 = {1, 23, 4, 5, 67} π16 = {1, 2, 3, 4, 5, 67} π22 = {12, 3, 4, 5, 6, 7}

π3 = {1, 23, 457, 6} π10 = {13, 2, 4567} π17 = {1, 2, 3, 456, 7} π23 = {13, 2, 4, 5, 6, 7}

π4 = {13, 2, 456, 7} π11 = {12, 3, 4567} π18 = {1, 2, 3, 457, 6} π24 = {1, 2, 3, 4, 5, 6, 7}

π5 = {12, 3, 456, 7} π12 = {1, 23, 4567} π19 = {123, 4, 5, 6, 7} π25 = {1, 2, 3, 4567}

π6 = {1, 23, 456, 7} π13 = {123, 457, 6} π20 = {167, 2, 3, 4, 5} π26 = {167, 2, 3, 4, 5}

π7 = {13, 2, 4, 5, 67, } π14 = {123, 456, 7} πN = {123, 4567}

This game has πN = {123, 4567} as its only stable coalition structure and three non-

trivial absorbing sets of the associated coalition formation system. There are two disjoint

rings: R1 = {12, 23, 13} andR2 = {457, 456, 67}.

12

23

13

R1

457

456

67

R2

Ring R1 is the only (effective) ring component embedded in the absorbing set AN
1 .

Ring R2 is the only (effective) ring component embedded in the absorbing set AN
2 .

To see this, consider either R1 with the stable coalition 4567 or R2 with the stable

coalition 123. However, bothR1 andR2 are embedded inAN
3 and have no exit, so both

are effective.

♦

5 Coalition formation games and sharing rules

As mentioned in the Introduction, the configuration of coalition formation games

may depend on how the output produced by each coalition is distributed among

its members. Indeed, the sharing rule chosen to divide up each coalitional out-

put is crucial for the existence of stability and convergence to stability. Subsec-

tions 5.1 and 5.2 analyze whether the main sharing rules considered in Pycia

(2012) and Gallo and Inarra (2018) induce coalition formation games that ex-

hibit convergence to stability.
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5.1 Coalition formation games and bargaining solutions

Pycia (2012) presents a model in which there is a set of agents, each endowed

with a utility function, who form coalitions that produce outputs to be dis-

tributed among its members. He shows that under a rich domain of prefer-

ences and some restrictions on coalitions there is a stable coalition structure

for each preference profile if and only if agents’ preferences satisfy pairwise

alignment. Agents’ preferences are pairwise aligned if any two agents rank

coalitions that contain both of them in the same way. Formally, in our setting

of strict preferences, a preference profile �N over coalitions is pairwise aligned if

for all i, j ∈ C ∩ C′ it holds that C �i C′ if and only if C �j C′.

Given a set of agents N and a set of coalitions K ⊆ 2N \ {∅}, a coalitional

bargaining problem is a tuple (UN, y(C)C∈K) where UN = (Ui)i∈N is a vector

of utility functions Ui : R+ −→ R+ and, for each C ∈ K, y(C) is the output

produced by coalition C. When agent i ∈ C gets the share x of output y(C) her

utility gives her Ui(x). Given C ∈ K, the bargaining problem for C is (UC, y(C))

where UC = (Ui)i∈C is the utility vector of agents in C and y(C) is the output

of coalition C.11 An allocation for the bargaining problem for C, is a vector x =

(xi)i∈C ∈ RC
+ such that ∑i∈C xi = y(C). A bargaining rule is a mapping that

associates an allocation with each bargaining problem.

Given a coalitional bargaining problem (UN, y(C)C∈K), a bargaining rule F

induces a coalition formation game (N,K,�N) in the following way: for each

i ∈ N and each pair C, C′ ∈ K with i ∈ C ∩ C′, if Fi(UC, y(C)) > Fi(UC′ , y(C′))

then C �i C′. Note that for the game to be well-defined, no pair of bargaining

problems should allocate the same amount to agent i. A bargaining rule is pair-

wise aligned if the coalition formation game induced is pairwise aligned for each

bargaining problem.

Theorem 3 Any coalition formation game induced by a pairwise aligned bargaining

rule exhibits convergence to stability.

11We normalize all bargaining problems so that the disagreement point is equal to the origin.
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Proof. Let (N,K,�N) be a coalition formation game induced by a pairwise

aligned bargaining rule. Pycia (2012) guarantees that (N,K,�N) is a stable

coalition formation game with no rings.12 By Corollary 1, (N,K,�N) exhibits

convergence to stability. �

Unlike the Kalai-Smorondinsky bargaining rule (Kalai and Smorodinsky,

1975), the Nash bargaining rule (Nash, 1950) is included in the class of pair-

wise aligned bargaining rules (see Pycia, 2012, p.331) and therefore guaran-

tees stability. However, even if one considers only stable coalition formation

games induced by the Kalai-Smorodinsky solution, it is found that they may

lack convergence to stability. Below, we define these two rules and illustrate

their behavior when inducing coalition formation games. Given C ∈ K, the

Nash bargaining rule for problem (UC, y(C)) is determined by solving:

max
xi≥0

∏
i∈C

Ui(x) subject to ∑
i∈C

xi = y(C).

Given C ∈ K, the Kalai-Smorodinsky bargaining rule for problem (UC, y(C))

is determined by solving:

Ui(xi)

Ui(y(C))
=

Uj(xj)

Uj(y(C))
for all i, j ∈ C subject to ∑i∈C xi = y(C).

Example 6 Consider a risk-averse firm f and a risk-neutral firm g that can employ

either one or two risk-averse workers w1, w2 whose utilities are given by

U f (x) = x1/4, Ug = x, Uw1(x) = x1/6, Uw2(x) = x1/2.

The following table provides the coalitions and the allocation given by the Nash and the

Kalai-Smorodinsky (K-S) bargaining solutions for different levels of outputs:

12Pycia (2012) shows that each pairwise aligned bargaining rule induces a stable coalition

formation game (Corollary 1 in Pycia (2012)) with a rich domain of preferences. Lemmata 3 and

4 in Pycia (2012) state that a coalition formation game with rich domain and pairwise aligned

preferences has no “n-cycles in preferences”. The non-existence of “n-cycles in preferences” in

his setting implies the non-existence of rings in our setting.
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Coalitions f w1w2 g w1w2 f w1 f w2 g w1 g w2

Outputs 43 83 20 37 1 1

Nash (11.7, 7.8, 23.5) (49.8, 8.3, 24.9) (12, 8) (12.3, 24.7) (0.8, 0.2) (0.7, 0.3)

K-S (12.7, 6.9, 23.4) (49.6, 3.8, 29.6) (11.4, 8.6) (14.1, 22.9) (0.8, 0.2) (0.6, 0.4)

The coalition formation game induced by Nash bargaining is:

f g w1 w2

f w2 g w1w2 g w1w2 g w1w2

f w1 g w1 f w1 f w2

f w1w2 g w2 f w1w2 f w1w2

f g g w1 g w2

w1 w2

Observe that the stable coalition structure is πN = { f , g w1w2}, the preference profile

is pairwise aligned and there are no rings in preferences. Therefore, the game induced

by Nash bargaining exhibits convergence to stability.

The coalition formation game induced by Kalai-Smorodinsky bargaining is:

f g w1 w2

f w2 g w1w2 f w1 g w1w2

f w1w2 g w1 f w1w2 f w1w2

f w1 g w2 g w1w2 f w2

f g g w1 g w2

w1 w2

Observe that the stable coalition structure is πN = { f w1w2, g}, the preference profile

is not pairwise aligned and there is a ring in preferences { f w1, f w2, g w1w2} that

satisfies the following: In each ring coalition, there is one agent who prefers a stable

coalition to the ring coalition and another agent who prefers the ring coalition to a
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stable coalition (possibly the same one).13 Therefore, by Proposition 3, this stable game

induced by Kalai-Smorodinsky bargaining lacks convergence to stability. The non-

trivial absorbing set is formed by the coalition structures { f w1, g w2}, {g, f w2, w1},

{ f w2, g w1}, { f , g w1w2}, and {g, f w1, w2}. ♦

5.2 Coalition formation games and rationing rules

In the model considered by Gallo and Inarra (2018), there is a set of agents with

claims and each coalition of agents produces an output which is insufficient to

meet the claims of its members. Formally, given set of agents N and a set of

coalitions K ⊆ 2N \ {∅}, a coalitional rationing problem is a tuple (dN, y(C)C∈K)

where dN = (di)i∈N ∈ RN
+ is a claims vector, y(C) ∈ R+ is the output of

coalition C and ∑i∈C di ≥ y(C) for each C ∈ K. Given C ∈ K, the rationing

problem for C is (dC, y(C)) where dC = (di)i∈C is the claims’ vector of agents in

C and y(C) is the output of coalition C. An allocation for the rationing problem

(dC, y(C)) is a vector x = (xi)i∈C ∈ RC
+ such that ∑i∈C xi = y(C). A rationing

rule is a mapping that associates an allocation with each rationing problem.

Given a coalitional rationing problem (dN, y(C)C∈K), a rationing rule F in-

duces a coalition formation game (N,K,�N) in the following way: for each

i ∈ N and each pair C, C′ ∈ K with i ∈ C ∩ C′, if Fi(dC, y(C)) > Fi(dC′ , y(C′))

then C �i C′. Note that for the game to be well-defined, no pair of rationing

problems should allocate the same amount to agent i.

One of the most important classes of rules for rationing problems is the class

of parametric rules (see Young, 1987; Stovall, 2014). The proportional, con-

strained equal awards, constrained equal losses, and the Talmud and reverse

Talmud rules are symmetric parametric rules while the sequential priority rule

is an asymmetric parametric rule.

Let f be a collection of functions { fi}i∈N,14 where each fi : R+ × [a, b] −→

R+ is continuous and weakly increasing in λ, λ ∈ [a, b], −∞ ≤ a < b ≤ ∞

13This type of game is analyzed in Section 6.
14When the rule is symmetric, fi is the same for all agents.
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and for each i ∈ N and di ∈ R+, fi(di, a) = 0 and fi(di, b) = di. Given f , a

parametric (rationing) rule F is defined as follows. For each problem (d, y) and

each i ∈ N, Fi(d, y) = fi(di, λ) where λ is chosen so that ∑i∈N fi(di, λ) = y.15

Theorem 4 Any coalition formation game induced by a parametric rule exhibits con-

vergence to stability.

Proof. Let (N,K,�N) be a coalition formation game induced by a parametric

rule. Gallo and Inarra (2018) guarantee that (N,K,�N) is a stable coalition for-

mation game with no rings.16 By Corollary 1, (N,K,�N) exhibits convergence

to stability. �

Gallo and Inarra (2018) characterize the class of rules that have stable coali-

tion structures (see their Theorem 2). The random arrival rule (O’Neill, 1982)

fails to guarantee stability. Moreover, focusing only on stable coalition forma-

tion games induced by the random arrival rule, we find that they may lack con-

vergence to stability. The following example illustrates the different behavior

of the proportional rule and the random arrival rule when inducing coalition

formation games.17

15In the literature, f is said to be a parametric representation of F.
16Gallo and Inarra (2018) show that each parametric rationing rule induces a stable coalition

formation game with no rings in preferences (Proposition 1 in Gallo and Inarra (2018)). The

non-existence of rings in preferences in their setting implies the non-existence of rings in our

setting.
17 For each C ∈ K, each (dC, y(C)), and each i ∈ C,

Proportional rule, Prop:

Propi(dC, y(C)) =
di

∑j∈C dj
y(C).

Random arrival rule, RA:

RAi(dC, y(C)) =
1
|C|!

(
∑

l∈OC

min

{
di, max

{
y(C)− ∑

j∈C, jli
dj, 0

}})
,

where OC denote the class of strict orders on C, with generic element l.
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Example 7 Assume that there is a call to finance research projects and that a number

of researchers are ready to submit a project. Each researcher has an aspiration, which de-

pends on her CV, as to how much the money she deserves. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9}

be the set of researchers with the following aspirations:

c1 = c2 = c5 = c7 = c8 = c9 = 50, c3 = c4 = c6 = 10.

Researches can form various teams but participate in only one. Funding depends on

the quality of the project, which in turn depends on team composition, and there is not

enough money to meet the aspirations of all possible teams. Assume that the money to

be assigned to each potential team is distributed according to the random arrival rule

and to the proportional rule. The table below gives the coalitions, the outputs, and the

distribution of the outputs given by these two rules.

Coalitions {15} {45} {123} {34} {68} {78} {679} {26}

Outputs 34 20 53 9 9 34 53 20

RA (17, 17) (5, 15)
( 73

3 , 73
3 , 13

3

) ( 9
2 , 9

2

) ( 9
2 , 9

2

)
(17, 17)

( 13
3 , 73

3 , 73
3

)
(15, 5)

Prop (17, 17) ( 10
3 , 50

3 )
( 265

11 , 265
11 , 53

11

) ( 9
2 , 9

2

) ( 3
2 , 15

2

)
(17, 17)

( 53
11 , 265

11 , 265
11

)
( 50

3 , 10
3 )

The coalition formation game induced by random arrival rationing is:

1 2 3 4 5 6 7 8 9

123 123 34 45 15 26 679 78 679

15 26 123 34 45 68 78 68 9

1 2 3 4 5 679 7 8

6

In this game the stable coalition structure is {15, 26, 34, 78, 9} and the ring is {679, 68, 78}.

Note that this ring together with coalitions 123 and 45 generate lack of convergence to

stability through the nontrivial absorbing set formed by {123, 45, 679, 8}, {123, 45, 68, 7, 9},

and {123, 45, 6, 78, 9}.

The coalition formation game induced by proportional rationing is:
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1 2 3 4 5 6 7 8 9

123 123 123 34 15 26 679 78 679

15 26 34 45 45 679 78 68 9

1 2 3 4 5 68 7 8

6

In this game the stable coalition structure is {123, 45, 679, 8} and there are no rings.

Therefore, the game exhibits convergence to the stable coalition structure. ♦

6 Enclosed coalition formation games

These games exemplify real life situations in which lack of convergence to sta-

bility arises. Consider, for instance, that after an elections no single party has

attained the majority required to form a government. Each party, even those

with similar ideologies, often has different views about significant problems

such as the degree of centrality of the country, healthcare, immigration, etc.

Suppose that “the left” is fragmented into three parties and that any two of

them can form a government. However, it may happen that each party refuses

to govern with one of the others because of their antagonistic views about how

to handle a particular problem. Although the entire left is a stable coalition,

in the sense that once formed it could not be blocked by two of its parties, the

situation may well end up with another election. In these games, “enclosing” a

stable coalition in a ring suffices to prevent convergence to that stable coalition

structure.

Definition 10 Let (N,K,�N) be a coalition formation game with a unique stable

coalition structure πN. A ringR is enclosing if the following conditions hold:

(i) For each R ∈ R there is a pair of agents i, j ∈ R who satisfy πN(i) �i R and

R �j πN(j).

(ii) For each R ∈ R and each X ∈ K \ πN, if X � R then X ∈ R.
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(N,K,�N) is said to be an enclosed coalition formation game when it has an

enclosing ring.

Condition (i) requires there to be one agent in each ring coalition who prefers

a stable coalition to the ring coalition and another agent who prefers the ring

coalition to a stable coalition (possibly the same one). This implies that there is

no ring coalition that belongs to the stable partition. Condition (ii) requires that

each ring coalition can be blocked only by a ring coalition.

Proposition 3 An enclosed coalition formation game lacks convergence to stability.

Proof. Let (N,K,�N) be an enclosed coalition formation game with a unique

stable coalition structure πN and let R be its enclosing ring. Let R ∈ R, and

define π as follows:

π(i) =

 R for i ∈ R

{i} otherwise

Condition (i) of Definition 10 and the fact that there is only one stable coalition

structure mean that π is not stable. Call successor of π to each coalition structure

π′′ such that π′′ �T π. First, we claim that no successor of π is stable. Since

π is not stable, there are π′ and C ∈ K such that π′ � π via C. If C ∩ R 6= ∅

then, by Condition (ii) of Definition 10, C ∈ R. If C ∩ R = ∅, then R ∈ π′.

In either case, π′ ∩R 6= ∅. Therefore, by Condition (i) of Definition 10 and the

uniqueness of the stable coalition structure, π′ is not stable. The claim is proved

is the same reasoning is applied inductively. Now we complete the proof of the

proposition. Since π is not stable, by Remark 2 (iii), there are an absorbing set

AN and a coalition structure π̃ ∈ AN such that π̃ �T π. As π̃ is a successor

of π, π̃ is not stable, and therefore |AN| ≥ 3. Therefore, by Proposition 1, this

enclosed coalition formation game lacks convergence to stability. �

Admittedly, this is a restricted class of coalition formation games, but it

makes it clear that a small group of agents conforming an enclosing ring may

be enough to preclude convergence to stability. Furthermore, important models

such as matching models with complementarities and peer effects can induce
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enclosed coalition formation games. For instance, in the academic labor mar-

ket universities frequently wish to hire academics with complementary skills

so as to reinforce a specific field, and otherwise prefer to hold the offer off. On

the other side of the market, for academics choosing whom to work for is an

important consideration. The following example illustrates this situation.

Example 8 Consider three universities and three professors in the academic market

for economics. Candidate cA specializes in applied economics, candidate cB is a behav-

iorist and candidate cT is a theorist. Suppose that each academic prefers a different

colleague and they would rather be all together than with the least preferred colleague.

Universities U1 and U2 can hire two candidates while university U3 can hire all of

them. Furthermore, university U1 will hire as long as one of them is a theorist while

university U2 is not interested in this profile. Otherwise, all agents remain single. This

description is consistent with the following coalition formation game:

U1 U2 U3 cA cB cT

U1cAcT U2cAcB U3cAcBcT U1cAcT U2cAcB U1cBcT

U1cBcT U2 U3 U3cAcBcT U3cAcBcT U3cAcBcT

U1 U2cAcB U1cBcT U1cAcT

cA cB cT

The enclosing ring (U1cAcT, U2cAcB, U1cBcT) prevents convergence to the stable

coalition structure {U1, U2, U3cAcBcT}. Each coalition structure of the non-trivial

absorbing set contains a different ring coalition and single agents. ♦

Finally, the class of enclosed coalition formation games does not include but

intersects with the class of weak top coalition games18 (Banerjee et al., 2001)

18A coalition W ⊆ G ⊆ N, is a weak top coalition of G if it has an ordered coalition structure

(S1, ..., Sl) such that (i) any agent in S1 weakly prefers W to any subset of G and (ii) for any

k > 1, any agent in Sk needs cooperation of at least one agent in ∪m<kSm in order to form a

strictly better coalition than W. A game satisfies the weak top coalition property if for any coalition

G ⊆ N, there exists a weak top coalition W of G.
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and the class of ordinally balanced games19 (Bogomolnaia and Jackson, 2002).

Although these classes of stable coalition formation games impose some degree

of commonality on agents’ preferences, guaranteeing the non-emptiness of the

core, they may lack convergence to stability.

Example 9 (see Bogomolnaia and Jackson, 2002, Section 4). Consider the following

two coalition formation games:

1 2 3

12 23 13

123 123 123

13 12 23

1 2 3

1 2 3

123 23 13

12 12 123

13 123 23

1 2 3

The game in the first table is ordinally balanced and the one in the second table satisfies

the weak top coalition property. In both cases coalition {123} is the unique stable coali-

tion structure and there is an enclosing ring: (13, 12, 23). It is not possible to reach

the stable coalition structure starting from any coalition structure which contains a

two-agent coalition and a singleton. These two games are enclosed coalition formation

games and hence do not converge to stability. If either games is modified by setting

coalition 123 as the top choice of each agent, then the resulting game is ordinally bal-

anced and satisfies the weak top coalition property. However, this game is not enclosed

and exhibits convergence to stability. ♦

7 Concluding remarks

To conclude, we first discuss our results considering the general class (stable

and unstable) of coalition formation games and then mention some further re-

search.
19A family of coalitions B ⊂ N is balanced if there is a vector of positive weights λS, such

that for each agent i ∈ N, ∑S∈B:i∈S λS = 1 (see Bondareva, 1963; Shapley, 1967). A coalition

formation game is ordinally balanced if for each balanced collection of coalitions B there is a

coalition structure π such that for each i there is S ∈ B with i ∈ S such that π(i) �i S.
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We claim that our characterization result (Theorem 2) goes beyond the anal-

ysis of convergence to stability. Our approach is certainly focused on determin-

ing what structures of preferences over coalitions generate a non-trivial absorb-

ing set. We conclude that it is the presence of at least one effective ring compo-

nent that precludes convergence to stability. Thus, our analysis is independent

of whether there is a stable coalition structure (trivial absorbing set): if such

a structure exists then the presence of an effective ring component precludes

convergence to stability. Otherwise, the problem of convergence to stability

is vacuous. However, the characterization provided identifies the agents that

generate effective ring components. These agents show their dissatisfaction by

blocking the ring coalitions of the effective ring component one after the other.

Hence, if convergence to stability is the goal pursued then some of the coali-

tions formed by the dissatisfied agents must be neutralized by transforming

them into non-permissible coalitions.

The notion of absorbing set can also be thought as a solution concept for

coalition formation games as they always exist and show the dynamic prop-

erty of outer stability. For stable coalition formation games, the coexistence of

trivial and non-trivial absorbing sets is equivalent to lack of convergence to sta-

bility. For unstable coalition formation games, the dissatisfied agents of each

coalition structure in a non-trivial absorbing set make any coalition structure

unpredictable, but these coalition structures dominate those not in the set, so

the latter are discarded as plausible outcomes.

Finally, Ballester (2004) studies the complexity of coalition formation games

and shows that the computation of stable coalition structures is NP-complete.

It is important to note that the size of a coalition formation game, understood as

the size of the input of the program, is the size of the set of the coalition struc-

tures formed by the permissible coalitions, |Π|. NP-completeness implies that

the time needed to solve a coalition formation game is likely to be exponential

in |Π| (and, of course in |N|). Moreover, a look at the proofs for coalition for-

mation games in Ballester (2004) reveals that the complexity of finding the core
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is simply the complexity of finding the coalition structures of N inside a set of

permissible coalitions. So, even if the set of coalitions is restricted, the number

of possible coalition structures is still exponential and hardness is unlikely to be

overcome. Furthermore, the computation for finding a ring component seems

to be NP-complete since its definition depends on whether there is a non-trivial

absorbing set.
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